Research PhDTopics for the Statistics Curriculum
Topics for the Statistics Curriculum
Topics related to the basic preparation of the candidate
Data analysis
- Types of statistical survey
- Units and variables
- Classifications of variables
- Bar charts and histograms
- Empirical distribution function
- Median and quantiles
- Mean and properties
- Variance and properties
- Outliers and robustness
Elementary time series analysis
- Measures of change in a time series
- Simple index numbers
- Complex index numbers
Multivariate data analysis
- Scatter and scatter matrix
- Covariance, correlation and properties
- Covariance and correlation matrix and properties
- Least squares line
- Missing data
- Principal components
- Double and multiple contingency tables
- Conditional distributions
- Association indices for 2x2 tables
- Sample and structural zeros
Probability distributions
- Probability spaces
- Random variables (Binomial, Hypergeometric, Poisson, Uniform, Exponential, Normal)
- Expected value and moments from the origin
- Variance and central moments
- Indices of position, variance, skewness and kurtosis
- Chebyshev's inequality
- Law of large numbers
- Central limit theorem
- Multivariate distributions
- Mutivariate normal
- Multinomial
Sampling from finite populations
- Terminology: observation unit, target population, sampling unit, sampling frame
- Selection bias
- Measurement errors
- Sampling and non-sampling errors
- Random samples
- Simple random sampling
- Stratified sampling
- Cluster sampling
Plan of experiments
- Terminology of the plan of experiments: experimental combination, replication, randomisation, source of variability
- Role of factors
- Complete factor design
- Concept of interaction
Statistical models
- Parametric and non-parametric models
- Independent and identically distributed observations
- The normal model
- The Bernoulli model
- Independent but not identically distributed observations
- The analysis of variance model
- The simple linear regression model
Estimation methods
- Empirical distribution function
- Quantile-quantile graphs
- Method of moments
- Method of least squares
- Method of maximum likelihood
Frequentist inference
- Statistics and estimators
- Sample distributions in the normal model
- Non-bias
- Mean square error and its breakdown
- Efficiency and accuracy
Elementary asymptotic theory
- Consistency
- Asymptotic normality
- Asymptotic properties of maximum likelihood estimators and likelihood ratios
Confidence intervals
- Estimation intervals and coverage probabilities
- Pivot quantity method
- Likelihood intervals
Bayesian inference
- Conditional probability
- The generalised Bayes formula
- A priori parameter distributions
- A posteriori distribution
- Credibility intervals
- Comparison of confidence intervals and credibility intervals
Hypothesis testing
- Neyman-Pearson approach
- Test level
- Test statistics and level of significance of data (p-value)
- Uniformly most powerful tests
- Tests and confidence intervals
- Chi-square test of independence
Regression models
- Multiple linear regression
- Estimators of regression coefficients and standard errors
- Deviance analysis
- Future value prediction
- Residue diagnostics
- Weighted least squares
- Selection of variables
- Linear logistic regression model
- Goodness of fit in models with binomial data
Applications
- Experimental and observational studies
- Cohort and case-control studies
- Prevalence and incidence
- Risk measures
- Effect measures
- Duration data analysis
- Censored data
- Survival function and its estimation
- Mortality tables
- Risk function (force of mortality, failure rate)
- Diagnostic tests
- Sensitivity and specificity
Bibliography
Baldi, P. (2007). Calcolo delle probabilità. McGraw-Hill
Chiandotto, B. (2014). Inferenza statistica. Dispense, DISIA
Cicchitelli (2015). Statistica: principi e metodi. Pearson
Conti, P. L. & Marella, A. (2012). Campionamento da popolazione finite. Milan: Springer-Verlag Italia
Di Ciaccio, A. & Borra S. (2008). Statistica - metodologie per le scienze economiche e sociali. 2/ed. McGraw-Hill
Di Fonzo, T. Lisi, F. (2005). Serie storiche economiche. Carocci
Härdle, W. & Simar A. (2007). Applied Multivariate Statistical Analysis. Berlin: Springer
Liseo, B. (2008). Introduzione alla statistica bayesiana. Dispense
Montgomery, D. C. (2005). Progettazione e analisi degli esperimenti. McGraw-Hill
Pace, L. & Salvan, A. (2001). Introduzione alla statistica-II. Inferenza, verosimiglianza, modelli. Padua: CEDAM.
Pagano, M. & Gavreau, K. (2003). Biostatistica. Idelson Gnocchi
Santini, A. (2005). Appunti di analisi demografica. Dispense, DISIA.